Composite Technologies
from Cobham Antenna Systems

Maintaining precision in the most demanding applications

The most important thing we build is trust
Cobham Antenna Systems’ technical leadership in the use of advanced composites and its unequalled track record in innovative design solutions have made Cobham one of the foremost designers and manufacturers of specialist composite components and structures in Europe.

Cobham delivers a complete design to installation solution for advanced composite structures for airborne, naval and land based platforms.

As part of Cobham, Cobham Antenna Systems has the financial and management backing of one of the largest Aerospace and Defence organisations in the UK. This supports continual product and service development, the cornerstone of the company’s enviable reputation for excellence and reliability – essential assets in such demanding industries.

Radomes and structures are manufactured to the most exacting tolerances to meet diverse requirements such as aerodynamic loads, bird strike, hail, green seas, low Radar Cross Section (RCS), installed radar / antenna performance through to ballistic performance.

A Wealth of Experience
Composite Technologies has a wealth of experience with anisotropic materials, their benefits as well as limitations. This, coupled with a large, validated materials database enables the company to propose efficient cost-effective solutions to design requirements.

Creating structures that work reliably in the most demanding environments requires a holistic approach to design, manufacture and test. At Composite Technologies innovative design and specialist RF and composite expertise, combine to provide customers with structures that perform at all levels. This performance is underpinned with the very latest test facilities.

Mechanical Design

Composite Technologies has wide experience in all aspects of mechanical design and a deep understanding of non-metals. This enables the company to analyse every aspect of a customer’s requirements to ensure development of the most efficient and cost-effective solutions.

The company’s experience in mechanical design covers static and dynamic structural aspects and Computational Fluid Dynamics (CFD). Furthermore, its vast knowledge of reinforcing fibres and specialist matrices, including thermoplastics, means that the materials’ properties are tailored for optimum product performance.

RF Design

Radomes operating from VHF to microwave frequencies are designed with in-house developed software using ray-tracing, physical optics, and method-of-moments solution techniques.

This software is able to predict radome / antenna performance parameters such as main beam transmission loss, boresight error, sidelobe degradation, radome-induced flash lobes and depolarisation.

The company also has considerable experience of Low Observable (LO) structures and Frequency Selective Surfaces (FSS) which incorporate periodic arrays of conductive elements. These achieve transmission properties that are frequency-dependent, and thus allow the radome / antenna to have a lower out-of-band radar cross section.

RCS predictions can then be correlated to actual measurements using the company’s in-house test range.

Sampson Type 45 Destroyer Radar Array

The multi-functional radar array for the new Type 45 Destroyer is the main sensor for the Principal Anti-Air Missile System (PAAMS), requiring extremely high precision in construction.

Composite Technologies construct the array using ultra-high modulus carbon fibre to achieve the accuracy and stiffness requirements necessary for operation in the most extreme conditions.

Tornado IDS Radome Test

Tornado IDS radome undergoing evaluation on a far field test site.
The company is based on two sites that provide over of 135,000 square feet (12,500 sq m) of purpose-built manufacturing space.

The latest CAD systems enable the company to optimise received data to create cutter paths for five-axis machining centres that are crucial in the manufacturing process.

Whatever the manufacturing quantities, the precise tolerances demanded by the aerospace and defence markets are most stringently controlled.

Rigorous quality assurance procedures cover all manufacturing processes including hand lamination, pre-preg / autoclave, Resin Transfer Moulding (RTM), compression moulding, integration of metallic coatings through to final assembly backed up by proven abilities in repair and support.

Product integrity and consistency is of paramount importance – from small components to large, complex structures, the company is focused on fast, cost-effective, and above all, precise production.

Resin Transfer Moulding

The properties of a radome need to meet the conflicting requirements of high impact strength, good temperature performance and excellent dimensional stability with low dielectric loss properties.

Eurofighter Typhoon nose radome quartz pre-form being laid up on male RTM tool.
Quality Assurance

Three Axis Measuring

As well as meticulously measuring prototypes or finished products, this facility can be used to generate CAD models of components to verify compliance with the original drawings. In addition components that lack either full definition or have incomplete drawings data can be measured and solid models created.

Cobham Antenna Systems is continually reviewing and improving the performance of its products and services and reinforcing its rigorous quality assurance programme backed up by frequent external and internal audits.

The company uses pre-production test facilities for assessments of new designs, and imposes strict compliance checks on every finished product. An extensive range of test equipment includes facilities for three-axis co-ordinate measuring and ultrasonic NDE. The company has numerous customer-specific approvals.

Laboratory Support

Materials Database and Testing

The laboratory facilities provide mechanical data under a broad range of environmental conditions. Typical testing standards include British Standards, MIL-STD’s, ASTM and CRAG.

Evaluation of materials’ performance under other environmental conditions such as rain erosion, UV and chemical contamination is also conducted. Over 40 years experience in the design of RF windows has yielded an extensive database of the specialised polymer and reinforcement materials required for low loss dielectrics.

Non-destructive Evaluation (NDE)

The company utilises a variety of NDE methods ranging from handheld ultrasonic A-scan to fully automated C-scan detection techniques.

IPD Correction

Insertion Phase Difference (IPD) correction is performed on the Eurofighter Typhoon radome up to its optimum value by selectively spraying the inside of the radome with a corrective coating. Phase changes at different points on the radome wall are measured and stored automatically using computer controlled positioning and data acquisition systems. Resin is then applied internally to bring the phase differences to within 0.5 degree of the required value.
Advanced Products with Proven Performance

Future Combat System

The Non-Line-of-Sight Cannon (NLOS-C) will serve as the key indirect fire support system for the US Army’s Future Combat System (FCS) programme. Composite Technologies conducts the overwrapping of the FCS vehicle drive rotors, with a high tension composite banding to clamp the magnets onto the structural hub.

Eurofighter Typhoon Radomes

Composite Technologies manufactures the complete suite of radomes for Eurofighter Typhoon including: Nose Radome, MAW, DASS Suite, Fin Tip, Strakes and CRPA.

Bombardier Dash 8 Auxiliary Fuel Tank

Autoclave-cured honeycomb sandwich construction was employed to minimise mass for this lightweight and modular solution to increase fuel capacity and extend the range of Bombardier Dash 8 surveillance aircraft in Australia.

EH101 Belly Radome

This AEW radome measuring over 3.2m in diameter was manufactured by Composite Technologies to a particularly demanding specification for both structural and RF parameters.

Precision Reflectors

The company has a long history in the design and manufacture of single piece and segmented reflectors with tolerances down to 0.04mm RMS.

Man-portable tactical seven segment communications reflector with exceptionally low mass.

Sentinel Components

The main structural array housing, Strongback, SATCOM and fore / aft data-link radomes for the UK Sentinel aircraft were manufactured by Cobham Advanced Composites for installation on the Bombardier Global Express aircraft.

Filament Winding

Highly accurate repeatable filament wound structures are manufactured using glass, aramid and carbon reinforcements with a wide variety of matrices.

Eurofighter Typhoon Radomes

Composite Technologies manufactures the complete suite of radomes for Eurofighter Typhoon including: Nose Radome, MAW, DASS Suite, Fin Tip, Strakes and CRPA.

Bombardier Dash 8 Auxiliary Fuel Tank

Autoclave-cured honeycomb sandwich construction was employed to minimise mass for this lightweight and modular solution to increase fuel capacity and extend the range of Bombardier Dash 8 surveillance aircraft in Australia.

EH101 Belly Radome

This AEW radome measuring over 3.2m in diameter was manufactured by Composite Technologies to a particularly demanding specification for both structural and RF parameters.

Precision Reflectors

The company has a long history in the design and manufacture of single piece and segmented reflectors with tolerances down to 0.04mm RMS.

Man-portable tactical seven segment communications reflector with exceptionally low mass.

Sentinel Components

The main structural array housing, Strongback, SATCOM and fore / aft data-link radomes for the UK Sentinel aircraft were manufactured by Cobham Advanced Composites for installation on the Bombardier Global Express aircraft.

Filament Winding

Highly accurate repeatable filament wound structures are manufactured using glass, aramid and carbon reinforcements with a wide variety of matrices.

SATCOM Reflectors

5.4m nine segmented SATCOM reflector and sub-reflector with 0.5mm RMS surface accuracy.

AW159 Future Lynx

Composite Technologies is responsible for the design and manufacture of the Tailplane End Plate for the Future Lynx, this structure also encompasses embedded antennas.

Future Combat System

The Non-Line-of-Sight Cannon (NLOS-C) will serve as the key indirect fire support system for the US Army’s Future Combat System (FCS) programme. Composite Technologies conducts the overwrapping of the FCS vehicle drive rotors, with a high tension composite banding to clamp the magnets onto the structural hub.
Ultimate performance structures

Cobham Antenna Systems will be at the forefront of tomorrow’s innovations, partnering with imaginative system designers to shape the future.

For further information please contact:

Cobham Antenna Systems
Composite Technologies
Gelders Hall Road
Shepshed
Leicestershire, LE12 9NH
England
Tel: +44 (0)1509 504541
Fax: +44 (0)1509 507563

Cobham Antenna Systems
Composite Technologies
Horizon Technology Park
Six Hills Way, Stevenage
Hertfordshire, SG1 2DH
England
Tel: +44 (0)1438 768800
Fax: +44 (0)1438 768822

www.cobham.com/antennasystems