High performance military aircraft need to maintain continuity for broadband, frequency hopping V/UHF secure communications. Radios need to integrate seamlessly with antennas to maximize the reliability and resilience of such communications. In conjunction with Cobham Antenna Systems’ range of tuneable antennas, the **7-5001 Logic Converter Unit (LCU)** takes frequency information from the radio and matches the performance of the antenna to that frequency.

The **7-5001** has been developed specifically to maintain the interface between the ARC210 Gen 5 radio and the 12-5001 antenna from Cobham in a configuration which is compatible with legacy systems.

The **7-5001** is intended for use in systems using Cobham Antenna Systems frequency agile 12-5001 Series antennas in combination with ARC210 Gen 5 radios.

The LCU may be configured for up to 2 separate (compatible) antennas.

The LCU terminates and validates the control signals from the ARC210 Gen 5 radio, extracts the frequency information, translates it to a tuning command, and provides the required drive signals to tune the antenna via the parallel bus at the output connector.

The LCU is powered from the 28 Volts dc aircraft supply.

The LCU contains extensive built in diagnostic facilities (BIT) which monitor the input data, PSU status, internal health monitor, in addition to monitoring each of the output drive lines. The BIT status of the unit is reported using a pair of LED indicators and an 'open-collector' switched ground output which is fed back to the transceiver.

The LCU is constructed from aluminium alloy with internal filter and protection PCBs to maximise EMC performance.

The **7-5001** and its associated antenna will `drop in` replace the 7-151 LCU and antenna, using existing cabling, for ARC210 Gen 4 to Gen 5 upgrades.
Specifications

Electrical Specification

DC Power Input Interface: Compatible with MIL-STD-704F, 28 Volts dc aircraft supply

- Normal Working Voltage: 22 to 29 Volts dc
- Emergency Working Voltage: 16 to 29 Volts dc

Protection: Reverse polarity and transient protection are incorporated in the design.

Power interrupts in accordance with MIL-STD-704F; the state of the antenna outputs will remain as set but may be reduced in level during the power interruption.

Maximum current from aircraft supply:
- Current at 16 V dc: 1.5 A max
- Current at 22 V dc: 1.2 A max
- Current at 28 V dc: 0.8 A max
- Current at 29 V dc: 0.8 A max

Serial Control Interface: The frequency information is transmitted via a 1 MHz Manchester encoded differential serial bit stream.

Antenna Drive Interface: Each of the nine drive-lines gives either a high voltage reverse bias or a constant current source for the PIN diodes in the antenna.

- High Level: Antenna segment, PIN diode reverse biased: +100 V ± 25 V
- Low Level: Antenna segment, PIN diode forward biased: 180 mA ± 25 mA constant current source

Environmental Specification

Altitude: MIL-STD-810F, Method 500.4, Procedures I and II
- 70,000 feet, storage and operational

High Temperature: MIL-STD-810F, Method 504.4, Procedures I and II
- Diurnal: 95°C
- Operational: 71°C

Low Temperature: MIL-STD-810F, Method 504.4, Procedures I and II
- Storage: -62°C
- Operational: -54°C

Shock: MIL-STD-810F, Method 516.5, Procedures I and V
- Functional: 20 g, 11 ms, sawtooth
- Crash Hazard: 40 g, 11 ms, sawtooth

Vibration: MIL-STD-810F, Method 514.5, Procedure I
- Sine Frequency (Hz):
 - 5 - 20: ≥ 0.1 inpspk
 - 20 - 33: ≥ 2 g
 - 33 - 52: ≥ 0.036 inpspk
 - 52 - 2000: ≥ 5 g

- Random Vibration: Endurance Frequency (Hz)
 - 15 - 133: ≥ 0.04 g²/Hz
 - 133 - 300: ≥ +4 dB/Octave
 - 300 - 1000: ≥ 0.12 g²/Hz
 - 1000 - 2000: ≥ -6 dB/Octave

Electromagnetic Interface: MIL-STD-461F

Emissions Categories: CE101, CE102, CE106, RE101, RE102

Susceptibility Categories: CS101, CS106, CS114, RS101, RS103

For further information please contact:

Cobham Antenna Systems
The Cobham Centre
Fourth Avenue, Marlow,
Buckinghamshire, SL7 1TF England
Tel: +44 (0)1628 472072
Fax: +44 (0)1628 482255
Email: antennasystems.marlow.marketing@cobham.com

The information contained herein is subject to change without notice and must not be taken as establishing any commitment binding upon Cobham Antenna Systems. No responsibility can be accepted for any errors or omissions.

© 2009 Cobham Antenna Systems